ゾル-ゲル電気泳動電着法により作製した酸化チタン皮膜の光触媒活性

黒崎 崇敏,中川 玲,飯村 修志,吉原佐知雄,白樫 高史

宇都宮大学院工学研究科エネルギー環境科学専攻(〒321-8585 栃木県宇都宮市陽東 7-1-2)

Photocatalytic properties of Titanium Oxide file prepared by Electrophoretic Sol-Gel Deposition

Takatoshi KUROSAKI, Akira NAKAGAWA, Shuji IIMURA, Sachio YOSHIHARA,

and Takashi SHIRAKASHI

Department of Energy & Environmental Science, Graduate School of Engineering, Utsunomiya University (7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan)

The films prepared by Electrophoretic Sol-Gel Deposition introduce it is useful immobilization as TiO₂ photocatalysis in this paper. Thus prepared films showed quite high-photocalytic activities without successive heat treatment. It is suggested that Non-heated film showed high-photocalytic activity because it responds shouter wave rather than Heating film.

Key Word: Titanium Oxide, Electrophoretic Sol-Gel Deposition, Non-heated film

1 緒言

酸化チタン光触媒は,環境浄化を目的とした様々な分野で 利用されている¹⁾.酸化チタン光触媒の多種多様な需要の増 加に伴って,その固定化法の選択や固定化基材の大きさ・形状 の選択性などが重要となり,これらの解決が,現在の酸化チ タン光触媒における研究課題の一つとなっている.

酸化チタン光触媒膜を作製する際,固定化法によっては基材 が高温に熱せられたり,熱処理を施す場合が多く,充分な光 触媒機能を有する酸化チタン膜を低温,特に室温付近の温度 で合成・固定化したという報告例は少ない.低温合成法とし て知られているゾル-ゲル法であっても,充分な光触媒機能を 有する酸化チタン膜を得るためには,数百度の熱処理を必要 とする.

酸化チタンを含むセラミックスの電気泳動は,溶媒中にセ ラミックスの粒子を帯電・分散させたものや酸化物等のゾル 溶液に電極を浸漬させ電場を印加することによりセラミック ス粒子を電極基板上に直接堆積させる手法である²⁾.本報で は,チタニアゾル溶液から電気泳動法によって導電性基材に 固定化³⁾した酸化チタンが,熱処理を施さなくても良好な光 触媒活性を得ることができたので,これを報告する.

2 実験方法

2.1 チタニアゾル溶液の調製

チタニアゾル溶液は、チタンテトライソプロポキシド(岸田 化学,特級)に溶媒のイソプロピルアルコール(岸田化学,特 級)と水を17:3:80の重量比で加えて,さらにこの混合液 100gに対して濃硝酸(岸田化学,特級)3gの割合で加えて調 製した.+分に加水分解と重縮合をさせた後,それを重量比 で10倍に希釈したものを電解液とした.

2.2 ゾル-ゲル電気泳動電着法による皮膜の作製

アセトンにより脱脂を施したステンレス基板と白金板をそれ

ぞれ陰極,陽極として調製したチタニアゾル溶液中に浸し, 定電圧電解法によりコーティングを行った.作用極であるス テンレス板はマスキングテープ(日東電工 N-300)によりマス キングして,反応面積4cm²とし,対極である白金板は2×2 cm²のものを用いた.電解により析出した皮膜を常温乾燥し たものを一次皮膜,その後熱処理を施したものを二次皮膜と して各種評価を行った.熱処理方法は,電気炉(YAMATO SCIENTIFIC,Muffle Furnace FP32)を用いて,空気雰囲 気中で100/hourの昇温速度で400 まで昇温,1時間保持し た.

Fig.1 Preparation method of TiO_2 films by Electrophoretic Sol-Gel Deposition.

Fig.2 Apparatus for evaluating the photocatalytic activity.

2.3 光触媒活性の評価方法

作製した皮膜の光触媒活性は、CH₃CHOの気相分解反応 で評価した.Fig.2のように石英ガラス製光学窓を有するガ ラスセルを使用し、CH₃CHOのセル内濃度が一定となるよ うに注入した後、光照射を行い、経時的にマイクロシリンジ でサンプリングしガスクロマトグラフ(SHIMADZU GC-14B) によりセル内濃度を定量した.光源にはキセノンランプ (USHIO XS-10201、光照射強度16-18mW)を使用した。光触媒 活性のアクションスペクトルはキセノンランプ光をモノクロメー ター(リツー応時料学、MC-20L)により分光して測定した.また、 光源の各波長における光量の測定は、パワーメーター(Newport Power Meter、Model 1815-c)を用いて測定した.

3.結果及び考察

3.1 非加熱皮膜の光触媒活性

各電解電圧で作製した皮膜の表面形状は,10V では皮膜を ほとんど形成しなかったが,20V以上印加電圧を高くしてい くほど均一な白色皮膜を形成するようになった.この熱処理 前皮膜を用いて光触媒活性の評価を行った.その評価結果を Fig.3 に示す.系内のアセトアルデヒド濃度を約500ppmと して光照射を行ったところ,印加電圧20V以上で作製した皮 膜が良好な活性を示した.また、高い印加電圧で表面形状が より均一に形成した皮膜ほど,その光触媒活性が高い傾向に あることがわかった.

また,熱処理前後で光触媒活性の評価を行った.印加電圧 30Vで作製した皮膜を用いて,初濃度500ppmと1500ppm から評価を行い,熱処理後,再び同様の評価を行った.その 評価結果をFig.4 に示す.光触媒活性は,熱処理を施しても ほぼ変化はなく,初濃度の変更によってその傾向が変わるこ とはなかった.高濃度雰囲気中であっても良好な光触媒活性 を示し,特に熱処理前の皮膜は,系内濃度100ppmまでは, 熱処理を施した皮膜よりも濃度減少が速い傾向が見られる.

光触媒活性から作製した皮膜の光の波長依存性について 評価した結果を Fig.5 に示す.図には,キセノンランプ光を モノクロメーターで分光した波長の光を照射し,10分毎に残 留アセトアルデヒドガス濃度を測定して 30分間光照射した ときのガス減少速度を照射光の単位時間当たりの光子密度で 規格化補正した値をプロットした.スペクトルの立ち上がり の位置は熱処理前後ともに 390nm であった.スペクトルの 形は熱処理前後で同様であったが,熱処理皮膜のスペクトル が約10nm程度長波長側にシフトすることが分かった.ゲル 膜の熱処理は,膜の緻密化・結晶化を起こす 4.加水分解と

Fig.3 Time dependence of the concentration of the acetaldehyde gas remaining in the cell under illumination of Xenon lump.

Fig.4 Time dependence of the concentration of the acetaldehyde gas remaining in the cell under illumination of Xenon lump.

Fig.5 Action spectra of photocatalytic activity for the TiO₂ film.

重縮合により高分子化したチタニア化合物は,電気泳動によ り多結晶体として固定化する.多結晶体中の1次粒子は, Ti[OCH(CH₃)₂]₄の数分子が加水分解と重縮合を起こした数 nmの粒子であると報告されている²⁾.熱処理によって1次 粒子同士が結合し,粒子の緻密化・結晶化が起こる.X線回 折装置(理学電気(株),RINT2000 AFC-7)による測定から, 本法で作製した皮膜の結晶構造にも同様の傾向が見られた. Fig.6のように熱処理前の皮膜は,TiO₂ anatase を優先的に 生成し,そのピークは非常に幅広であった.また,熱処理を 施すことによってTiO₂ anatase とともにTiO₂ rutileの結晶 性が向上している.TiO₂ anatase のピークから以下の式に示 す Scherrer の式を用いてTiO₂ の結晶子の大きさを求めた。 その算出結果をTable1に示す.

Fig.6 X-ray diffraction patterns of TiO₂ films obtained by with or without heat treatment. The lines and denote with heat treatment, without heat treatment, respectively

Table1 Primary particle's size of TiO₂ anatase crystals estimated by X-ray diffraction patterns of TiO₂ films obtained by with or without heat treatment.

	2 [deg]	B [deg]	D []	
Non-heating film	25.18	1.84	43.2	
Heating film	25.4	1.24	64.7	

$D=K \cdot /(B \cdot \cos)$

ここで D は結晶子の大きさ, K は Scherrer 定数, は X 線 の波長,Bは半値幅,はX線入射角である.これより,作 製したTiO2皮膜の1次粒子は数nmオーダーであり 400 の熱処理で1次粒子径が拡大していることが分かる.また, これらの粒子サイズは,光触媒の量子サイズ効果5)6)が十分 期待できる大きさである.光触媒反応において,ある程度以 上粒径が小さくなると生成した電子と正孔が再結合せずに表 面に到達できるようになるが, それ以上小さくしてもバルク 内での再結合の機会は変化しない.しかし,粒子内での再結 合と粒子表面への拡散の競争から,粒子径100 以下でも反 応性と収率の向上が見られ、さらにある種の半導体において, 50 以下の超微粒子ではバンド構造がとけ,電子と正孔はそ れぞれとびとびのエネルギー準位を占め,バルクのときの半 導体のバンドギャップに相当する幅が増大することが確かめ られている 6). バンドギャップの増大は,光の吸収波長を短 波長側にシフトさせる.このことは, Fig.5 に示した熱処理 前皮膜のスペクトルの傾向と合致する.

3.2 皮膜表面構造の解析

作製した皮膜の表面構造の解析は, FE-SEM(日立製作所, S-4500) と EDX(堀場製作所, EMAX-5770W)を用いて, 皮 膜表面の観察と元素分析を行った.一般に生成したゲル厚膜 の乾燥や熱処理は,溶媒の蒸発,膜の緻密化・収縮,基板と の熱腫張係数の差による引張り応力あるいは圧縮応力によっ て亀裂発生や膜の剥離が起こる 4).Fig.7 に示すように本法で 作製した皮膜も亀裂が発生していることが分かった . 熱処理 前の皮膜からも亀裂が確認できるため, 電解後の常温乾燥の ときに亀裂が発生していると考えられる.また,熱処理前後 で表面構造に大きな変化は見られなかったことから,表面積 の変化はほとんどないと考えられる.また,皮膜部分と亀裂

30V :Non-heated film

or Heated film.

Fig.7 SEM photographs for the surface of Non-heated film

Table2 Concentration of each elements of Non-heated or Heated film by Energy dispersion fluorescent X-ray analysis.

	Atomic percentage [%]						
	Ti	0	Fe	Cr	Ni		
1	2.89	16.52	66.21	14.14	0.24		
2	22.14	77.33	0.39	0.12	0.02		
3	7.05	0.06	80.45	12.44	0.00		
4	22.95	76.58	0.37	0.37	0.01		

部分の微小範囲を熱処理前後のそれぞれで元素分析を行った. その結果を Table2 に示す.皮膜部分の原子数濃度は,熱処 理前後で変化はなく,ほぼ TiO2 で構成されていることが分 かる.しかし, 亀裂部分は, 熱処理によって酸素原子数濃度 が著しく減少した.これは,亀裂部分に残留していた(CH3) 2CHOH や Ti[OCH(CH3)2]4の有機溶媒が熱処理によって蒸 発や熱分解を起こしたためと考えられる.これより, 亀裂部 分には,極少量残留したチタン化合物の存在のみとなる.

4.結言

ゾル-ゲル電気泳動電着法により作製した酸化チタン光触媒 皮膜は,熱処理を施さなくても熱処理を施した皮膜と同等の 良好な光触媒活性を示した.超微粒子の集合体で形成された 酸化チタン皮膜の量子サイズ効果によって,電子と正孔の再 結合を抑制することができたことが,光活性化の1つの要因 である.

文献

1) 藤嶋昭,橋本和仁,渡部俊也,"光クリーン革命", CMC (1997)

2) P.Sarkar and P.S.Nicholson, J.Am. Ceram. Soc.,

- 79.1987(1996)
- 3)中谷康弘,柳田祥三 特開平 11-310898(1999)

4) 作花済夫 ," ゾル-ゲル法応用技術の新展開 ", CMC (2000) 5) 東京都立大学工業化学科分子応用科学研究会,"材料化学 の最前線 - 分子1個,原子1個をどう操るか - "講談社(1998) 6) 窪川裕, 本田健一,斎藤康和, "光触媒", 朝倉書店(1988)